LNN: A Command-Line Program of Feedforward

Neural Networks

DONG Yuxuan <https://www.dyx.name>

Created on 03 Jul 2023 40800

Abstract

LNN (Little Neural Network) is a command-line program training and
running feedforward neural networks. LNN aims to make easy tasks easily
done. This report contains a user's guide and several examples to explain
the design of LNN.

This report describes the first version (0.0.1) of LNN. Like many pro-
grams, LNN evolves. There may be some new features of later versions
not contained by this report.

The code of LNN is hosted at GitHub <https://github.com/dongyx/
Inn>.

Contents

1 Introduction

2 Learning Addition of Real Numbers
3 Recognizing Hand-Written Digits

4 Recognizing Spam SMS Texts

5 Remarks

6 Appendix: Training Options

7 Appendix: Loss Functions

8 Appendix: Activation Functions

9 Appendix: MNIST Utilities
9.1 bimg2vec
9.2 Dblab2vec
9.3 wvec2lab e
9.4 labdiff

10 Appendix: SMS Spam Utilities

References

© © 0w 0o W

11

https://www.dyx.name
https://github.com/dongyx/lnn
https://github.com/dongyx/lnn

1 Introduction

The following call of LNN creates a network with a 10-dimension input layer, a 5-
dimension hidden layer with the sigmoid activation function, and a 3-dimension
output layer with the softmax activation function.

$ 1nn train -C q10i5s3m samples.txt >model.nn

The -C option creates a new model with the structure specified by the argument.
The argument here is q10i5s3m. The first character q specifies the loss function
to be the quadratic error (sec. 7). The following three strings 10i, 5s, 3m
represent that there are 3 layers, including the input layer, with dimensions 10, 5,
3, respectively. The character following each dimension specifies the activation
function for that layer. Here i, s, and m represent the identity function, the
sigmoid function, and the softmax function, respectively (sec. 8).

In the remaining part of this section, the dimension of input is denoted by n,
and the dimension of output is denoted by m.

LNN reads samples from the file operand, or, by default, the standard input.
The trained model is printed to the standard output in a text format.

The sample file is a text file containing numbers separated by white characters
(space, tab, newline). Each n 4+ m numbers constitute a sample. The first n
numbers of a sample constitute the input vector, and the remaining constitute
the output vector.

LNN supports many training arguments like learning rate, iteration count, and
batch size. The complete list is documented in sec. 6.

LNN could train a network based on an existed model by replacing -C with -m.
$ 1nn train -m model.nn samples.txt >model2.nn

This allows one to observe the behaviors of the model in different stages and
provide different training arguments (sec. 4).

The run sub-command runs an existed model.
$ 1nn run -m model.nn input.txt

LNN reads the input vectors from the file operand, or, by default, the standard
input. The input shall contain numbers separated by white characters (space,
tab, newline). Each n numbers constitute an input vector.

The output vector of each input vector is printed to the standard output. Each
line contains an output vector. Components of an output vector are separated
by a space.

The test sub-command evaluates an existed model.
$ 1nn test -m model.nn samples.txt

LNN reads samples from the file operand, or, by default, the standard input.
The mean loss value of the samples is printed to the standard output. The
format of the input file is the same as of the train sub-command.

2 Learning Addition of Real Numbers

This section trains a network to add two numbers with LNN. The training could
be done with a single Shell statement.

$ seq 1024 \
| awk 'BEGIN {srand(1)} {x=rand(); y=rand(); print x,y,x+y}' \
| Inn train -Cq2ili -i1024 >model.nn

The seq | awk part generates 1024 samples whose addends are between 0 and
1. These samples are then piped to LNN. The trained model is redirected to
the file model.nn. The argument q2ili means a 2-dimension input layer, a
1-dimension output layer, and the quadratic error loss function, no activation
functions. The -i option sets the iteration count to be 1024.

Evaluating the model is also very simple. The following call shows that the loss
on the test set is 0.

$ seq 1024 \
| awk 'BEGIN {srand(2)} {x=rand(); y=rand(); print x,y,x+y}' \
| 1nn test -mmodel.nn

0.000000
The test script is similar with the training script except that

e The random seed is different to avoid the test set from being the same
with the training set;
e The train sub-command of LNN is replaced with the test sub-command.

This model could be used as an addition calculator.

$ echo 231 -100 | 1lnn run -m model.nn
131.000000

3 Recognizing Hand-Written Digits

The MNIST database of handwritten digits [2], has a training set of 60000
examples, and a test set of 10000 examples. Each sample is a 28x28 gray-scale
image (784 pixels) labeled by 0~9. This section uses the MNIST database to
train a network recognizing hand-written digits.

Images and labels in the MNIST database are in a binary format and gzipped.
Several Shell or Awk scripts are developed to convert MNIST to LNN-acceptable
formats (sec. 9).

e bimg2vec: Convert MNIST image data to LNN-acceptable vectors

e blab2vec: Convert MNIST label data to LNN-acceptable vectors with
one-hot encoding

e vec2lab: Convert LNN output vectors to text labels (the index of the
maximal component)

e labdiff: Compare two text label files and print the accuracy

The original training and test image data are renamed to train.bimg.gz and
test.bimg.gz respectively in this section. The regarding original label data are
renamed to train.blab.gz and test.blab.gz.

The following commands generate several files for LNN.

$ gzip -d <train.bimg.gz | bimg2vec >train.in

$ gzip -d <train.blab.gz | blab2vec >train.out

$ paste train.in train.out >train.sam

$ gzip -d <test.bimg.gz | bimg2vec >test.in

$ gzip -d <test.blab.gz | blab2vec | vec2lab >test.lab

Some of these generated files are intermediate. The actually useful ones are the
following.

e train.sam: LNN sample file for training
e test.in: LNN input file for test
e test.lab: Labels regarding to test.in

The structure of the network is x784i16s10m. It means the network uses cross
entropy as the loss function. The network has a 784-dimension input layer,
a 16-dimension hidden layer with the sigmoid activation function, and a 10-
dimension output layer with the softmax activation function. The output is
regarded as the probability distribution of which digit the image is. The image
will be labeled by the maximal component of the output.

The network is trained using the following command.
$ 1nn train -C x784i16s10m -r3 -b64 -i4096 <train.sam >model.nn

The network is trained for 4096 iterations. The -r option sets the learning rate
to 3. The -b option sets the batch size to 64.

The following command runs the model on the test set and the output vectors
are converted to labels.

$ 1nn run -m model.nn <test.in | vec2lab >out.lab

The first several output labels are checked and compared with the test set by
the following command.

$ paste out.lab test.lab | head
7 7

©O© 01T O DR, PO RLDN
O o1t O DR, PO BRLN

The following command shows that the accuracy is 93.71%.

$ labdiff out.lab test.lab
0.9371

4 Recognizing Spam SMS Texts

The SMS Spam Collection [1] is a public set of SMS labeled messages that have
been collected for mobile phone spam research. This section uses this data set
to train a network recognizing SMS spams.

The data set is a text file, renamed sms . txt in this section. Each line of sms.txt
contains a message and its label, separated by a tab character. The label ham
represents the message is a regular message. The label spam represents the
message is a spam. The following snippet demonstrates the format of sms.txt.

ham Oh k...i'm watching here:)
spam Call FREEPHONE 0800 542 0578 now!

The 256 top frequent words from spam messages and regular messages are se-
lected respectively. These 512 words are combined and duplicated ones are
deleted. 408 unique words are left. The following shows some of them.

texts sorry
finish claim
ill why
at player
after too

Each message is encoded to a 408-dimension vector. The component of a vector
is the frequency (rate) of the word. The label is encoded to 1 if the message is
a spam, otherwise 0.

Data are divided into a training set with 4763 regular messages and 683 spam
messages and a test set with 64 regular messages and 64 spam messages. The
training set and the test set are named train.sam and test.sam respectively.

The code of the above preprocess is documented in sec. 10.

A b408ils network is trained. This network uses the binary cross entropy as
the loss function and contains a 408-dimension input layer, 1-dimension output
layer, no hidden layer. The output is regarded as the probability of the message
to be a spam. The input is regarded as a spam if the output is greater than
50%.

The network is trained for 64 epoches. Each epoch contains 128 iterations with
the batch size to be 1024. The learning rate of each epoch is 200(1 — a), where
a is the current accuracy. The model with maximal accuracy among epoches is
selected.

#!/bin/bash

set -e
t=$ (mktemp /tmp/lnn.spam.XXXXXX)
lnn train -C b408ils </dev/null >$t
acc=0
max=0
for ((i=0;i<64;i++)); do
lr=$(echo "(1-$acc)*200" | bc -1)
lnn train -i128 -b1024 -r$lr -m $t <train.sam >$t.swp

mv $t.swp $t

acc=$(
paste \
<(
<test.sam awk '{$NF=""}1' |
lnn run -m $t |
awk '{print ($0>0.571:0)}'
)\
<(awk '{print $NF}' test.sam) |
awk '$1==$2{e++}{n++}END{print e/n}'
)

echo $i $acc

if [$(echo "$acc > $max" | bc -1) -eq 1]; then
max=$acc
cp $t model.nn

fi
done
echo $max
rm $t

This training script uses non-POSIX features, thus the shebang comment is
#!/bin/bash instead of #!/bin/sh.

The following figure shows the result selected from many experiments. The
maximal accuracy is 94.53%.

0.95 . T . : .

09 | NS
085 |]
08| |]

0.75

Accuracy

07| | |
065 | | |
06 || |

055 L] _

05 UL L 1 1 L L 1
70

5 Remarks

LNN attempts to make easy tasks esily done. It provides cross-language simple
interfaces. This could decrease the cost of learning the utility. Users could call
LNN with any programming language as long as the language could call external
processes.

However, LNN is limited by the inter-process communication (IPC) mechanism
of the operating system. UNIX-compatible systems use texts or byte streams
for IPC. This makes it hard to pass executable code to LNN. Thus compar-
ing to traditional deep learning frameworks, it is less flexible. Users can't set
customized activation functions or loss functions.

One possible way to support customized functions, is passing program names
and arguments to LNN. LNN then calls the specified program and communicate
with it by IPC. However, this approach requires a protocol about how the ex-
ternal program reads and prints. Activation and loss functions are usually very
simple. Thus the main cost of writing these functions would be parsing and
formatting. This will break the main target of LNN: easy tasks easily done. If a
task requires customized activation or loss functions, a traditional deep learning
framework may be a better choice.

6 Appendix: Training Options

Syntax Description Default

-C STR Create a new model with the specific structure

-m FILE Specify an existed model

-R NUM Set the parameter of the L2 regularization

-i NUM Set the number of iterations 32
-r NUM Set the learning rate 1
-b NUM Set the batch size

7 Appendix: Loss Functions

This appendix assumes the network has D-dimension output. The i-th compo-
nent of the output vector is denoted by y,;. The i-th component of the target
vector is denoted by t,.

Character Description Formula

q Quadratic error % 2?:1 (y; —t:)*
Binary cross entropy Zzl (t;logy, + (1 —t;)log (1 —y,))
Cross entropy >y tilogy;

8 Appendix: Activation Functions

This appendix assumes the dimension of the layer is D. The weighted input
value to the i-th neuron of the layer is denoted by z;. The output value of the
i-th neuron of the layer is denoted by y;.

Character Description Formula
i Identity Y =;
s Sigmoid Y; = ﬁ
t Tanh Y; = iapl;i::’
z;, z, >0
T ReLU Y; = .
0, otherwise
m Softmax Y; et

_'Ziﬂe”

9 Appendix: MNIST Utilities

9.1 bimg2vec

#!/bin/sh

set -e

xxd -p -cl -gl |

awk '

{ $0 = sprintf("%d", "0x"$0) }

NR <
NR <=
NR <=
NR ==
{

8 { next }
h*256 + $0; next }
wx256 + $0; next }

12 { h =
16 { w
17 { ¢

printf

if (++i

} else

9.2 blab2vec

#!/bin/sh

set -e

xxd -p -cl -gi |

awk '

"%E", $0/255

printf "\n"

printf " "

{ $0 = sprintf("4d", "0x"$0) }
NR < 9 { next }

{
for (i = 0; i < 10; i++) {
if (4 > 0)
printf " "
printf "Yd", (i == $0 7 1 : 0)
}
print ""
}
9.3 vec2lab

#!/usr/bin/awk -f

{
max = 1;
for (i = 1; i <= NF; i++)

if ($1i > $max)
max = 1i;

print max - 1

}

9.4 1labdiff

#!/bin/sh

paste "$1" "$2" | awk '
{ n++ 3
$1 == $2 { c++ }
END { print c/n }

10 Appendix: SMS Spam Utilities
#!/bin/sh

set -e
d="mktemp -d /tmp/lnn.sms.XXXXXX"

topfreq()
{
awk '
{
for (i=1; i<=NF; i++)
freq[$il++;
}

END {
for (word in freq)
if (word ~ /7 (la-z]IN.INZI!1I'\"'")+8$/)

print word, freq[word]

}
' "$0" | sort -rnk2,2 | head -n 256 | cut -4d' ' -f1
}
txt2vec()
{
awk -v lab="$1" -vd=$d '
BEGIN {
wtab=d"/wtab.txt"
while (getline <wtab)
wd[$0] = d++
}
{
for (i=1; i<=d; i++)
v[i] = 0
for (i=1; i<=NF; i++)
if ($i in wd)
vIwd[$i]] += 1/NF
for (i=0; i<d; i++) {
if (i > 0)
printf " "
printf "Yf", v[i]
}
if (length(lab) > 0)
print " "lab
else
print ""
}
}
(

awk -F '\t' '$1=="spam"{print $2}' sms.txt | topfreq
awk -F '\t' '$1=="ham"{print $2}' sms.txt | topfreq
) | sort | uniq >$d/wtab.txt
awk -F '\t' -v d=$d '
$1 J— "spam" {
if (spam++ < 64)
file=d"/spam-test.txt"
else
file=d"/spam-train.txt"

$1 == "ham" {
if (ham++ < 64)
file=d"/ham-test.txt"
else

10

file=d"/ham-train.txt"
}
{
print $2 >file
}
' sms.txt
(txt2vec 1 <$d/spam-train.txt && txt2vec 0 <$d/ham-train.txt) \

>train.sam
(txt2vec 1 <$d/spam-test.txt && txt2vec 0 <$d/ham-test.txt) \

>test.sam
wc -1 $d/wtab.txt
rm -r $d
References

[1] Tiago Almeida and Jos Hidalgo. 2012. SMS Spam Collection. Retrieved
from https://archive.ics.uci.edu/dataset /228 /sms+spam-collection

[2] Yann LeCun and Corinna Cortes. 2010. MNIST Handwritten Digit
Database. Retrieved from http://yann.lecun.com/exdb/mnist/

11

https://archive.ics.uci.edu/dataset/228/sms+spam+collection
http://yann.lecun.com/exdb/mnist/

	Introduction
	Learning Addition of Real Numbers
	Recognizing Hand-Written Digits
	Recognizing Spam SMS Texts
	Remarks
	Appendix: Training Options
	Appendix: Loss Functions
	Appendix: Activation Functions
	Appendix: MNIST Utilities
	bimg2vec
	blab2vec
	vec2lab
	labdiff

	Appendix: SMS Spam Utilities
	References

