
The Implementation of Shsub: A Shell Template
Engine Written in C

DONG Yuxuan <https://www.dyx.name>

Created on Jul 29 2023 +0800
Updated on Aug 4 2023 +0800

Revision 2

Abstract

Shsub is a template engine of the Shell language, implemented in C.
This paper explains the implementation of Shsub 2.0.1 to help potential
contributors understand the code quickly.

Contents
1 Introduction 1

2 Lexical Analysis 2

3 Parsing and Translation 4

4 Including 7

5 Execution 8

6 Building and Installation 9

1 Introduction
The code of Shsub is hosted at GitHub <https://github.com/dongyx/shsub>.

The following file notes.html.tpl demonstrates a simple template:

<%for i in notes/*.md; do-%>
<% title="$(grep '^# ' "$i" | head -n1)"-%>

<%="$title"%>
<%done-%>

Calling shsub notes.html.tpl prints a HTML list reporting titles of your
Markdown notes.

The syntax of templates is:

1

https://www.dyx.name
https://github.com/dongyx/shsub

• Shell commands are surrounded by <% and %> and are compiled to the
commands themselves;

• Shell expressions are surrounded by <%= and %> and each <%=expr%> is
compiled to printf %s expr;

• Ordinary text is compiled to the command printing that text;

• A template can include other templates by <%+filename%>;

• If -%> is used instead of %>, the following newline character will be ignored;

• <%% and %%> are compiled to literal <% and %>.

2 Lexical Analysis
While splitting tokens from the input stream, 3 characters are required to de-
termine if there is a keyword. Those characters may be pushed back to the
stream in some cases. However, the standard function ungetc() allows only
one pushed-back character. Thus a custom stack is defined. It's called the
character stack, or, cstack.

int cstack[3], *csp = cstack, lineno = 1;

int cpush(int c)
{

if (c == '\n')
--lineno;

return *csp++ = c;
}

int cpop(FILE *fp)
{

int c;

if (csp == cstack)
c = fgetc(fp);

else
c = *--csp;

if (c == '\n') {
if (lineno == INT_MAX)

err("Too many lines");
++lineno;

}
return c;

}

The csp variable points to the top of the character stack. The cpush() function
pushes a character to the character stack. The cpop() functions pops a char-
acter from the character stack if the character stack is not empty; otherwise, it
reads the character from the stream. These functions are also responsible for
maintaining the lineno variable which is used in syntax error reporting.

2

There are 8 types of token in Shsub and they are defined by the token enumer-
ation. Meanings of these token types are listed in the following table.

Token Lexeme
INCL <%+
CMDOPEN <%
EXPOPEN <%=
CLOSE %> -%>
ESCOPEN <%%
ESCCLOSE %%>
LITERAL non-keyword text
END the sentinel for the end of the input stream

%> and -%> are combined to a single type CLOSE. This makes the grammar sim-
pler that only one token looked ahead is required to determine which grammar
rule should be applied. The grammar will be discussed in later text.

Most lexical analyzers can be implemented by a state machine. Shsub doesn't
build the state machine explicitly, but expresses the same procedure in the
control flow for brevity and readability. The gettoken() function returns the
next token type from the stream, and if it's LITERAL, the content is stored to
the literal buffer.

#define MAXLITR 4096

char literal[MAXLITR];

enum token gettoken(FILE *fp)
{

char *p;
int c, h, r, trim = 0;
enum token kw = END;

p = literal;
while (kw == END) {

while (p - literal < MAXLITR - 1) {
if ((c = cpop(fp)) == EOF || strchr("<%-", c))

break;
*p++ = c;

}
*p = '\0';
if (c == EOF)

return p > literal ? LITERAL : END;
if (p == literal + MAXLITR - 1)

return LITERAL;
h = cpop(fp);
r = cpop(fp);
if (c == '<' && h == '%') {

kw = CMDOPEN;

3

if (r == '=')
kw = EXPOPEN;

else if (r == '+')
kw = INCL;

else if (r == '%')
kw = ESCOPEN;

} else if (c == '%' && h == '>')
kw = CLOSE;

else if (c == '%' && h == '%' && r == '>')
kw = ESCCLOSE;

else if (c == '-' && h == '%' && r == '>') {
trim = 1;
kw = CLOSE;

} else {
cpush(r);
cpush(h);
*p++ = c;
*p = '\0';

}
}
if (p > literal) {

cpush(r);
cpush(h);
cpush(c);
return LITERAL;

}
if (kw == CMDOPEN || kw == CLOSE && !trim)

cpush(r);
if (trim && (c = cpop(fp)) != '\n')

cpush(c);
return kw;

}

The literal buffer has a fixed size. If a piece of literal text is too long, it will
be split to multiple tokens. This approach avoids dynamic resizing and it won't
limit the input length if we design a proper grammar.

The semantic of -%> is trimming the following newline character. The trimming
is directly executed in gettoken() instead of in the subsequent process. Because
the semantic is regarding characters instead of tokens, it's more natural to
handle it in lexical analysis.

3 Parsing and Translation
The grammar of Shsub templates is very simple and is described by the following
BNF.

<tmpl> := <END>
<text><tmpl>
<CMDOPEN><text><CLOSE><tmpl>

4

<EXPOPEN><text><CLOSE><tmpl>
<INCL><LITERAL><CLOSE><tmpl>

<text> := <END>
<LITERAL><text>
<ESCOPEN><text>
<ESCCLOSE><text>

There are two non-terminals: tmpl and text. The tmpl non-terminal represents
a template. The text non-terminal represents a token sequence of literal text or
text shall be escaped to literal text.

The filename in an including directive could only be a single LITERAL. This
limits the length of the included filename, and forbids the filename to contain
Shsub keywords. The limit decreases the complexity of the implementation at
the acceptable cost: It's rare that a file has a path exceeding 1000 characters or
has a name containing '<%', '%>', and etc..

The global variable lookahead is used to store the current token. The function

void tmpl(FILE *in, FILE *ou)

parses tmpl from in and prints the compiled script to ou. The function

void text(int esc, FILE *in, FILE *ou)

parses text from in, optionally escaping the text to the shell string representa-
tion, and prints the result to ou. The function

void match(enum token tok, FILE *fp)

checks if lookahead is matched the desired token and moves lookahead to the
next token.

enum token lookahead;

void tmpl(FILE *in, FILE *ou)
{

char *p;

while (lookahead != END)
switch (lookahead) {
case INCL:

/* Handle template including */
case CMDOPEN:

match(CMDOPEN, in);
text(0, in, ou);
fputc('\n', ou);
match(CLOSE, in);
break;

case EXPOPEN:
fputs("printf %s ", ou);
match(EXPOPEN, in);
text(0, in, ou);
fputc('\n', ou);

5

match(CLOSE, in);
break;

case LITERAL: case ESCOPEN: case ESCCLOSE:
fputs("printf %s '", ou);
text(1, in, ou);
fputs("'\n", ou);
break;

default:
parserr("Unexpected token");

}
}

void text(int esc, FILE *in, FILE *ou)
{

char *s;

for (;;)
switch(lookahead) {
case LITERAL:

if (!esc)
fputs(literal, ou);

else
for (s = literal; *s; ++s)

if (*s == '\'')
fputs("'\\''", ou);

else
fputc(*s, ou);

match(LITERAL, in);
break;

case ESCOPEN:
fputs("<%", ou);
match(ESCOPEN, in);
break;

case ESCCLOSE:
fputs("%>", ou);
match(ESCCLOSE, in);
break;

default:
return;

}
}

void match(enum token tok, FILE *fp)
{

if (lookahead != tok)
parserr("Lack of expected token");

lookahead = gettoken(fp);
}

The tmpl() and text() functions constitute a recursive-descent parser, but

6

recursive calls are transformed to iterations. The code handling including in
tmpl() is omitted. Recursive calls are used for that.

4 Including
When an including directive is scanned, Shsub saves the related global variables
to a stack called the including stack, or, istack, and recursively parses the
included file. Each frame of the including stack is called an including frame, or,
iframe.

#define MAXINCL 64

struct iframe {
FILE *in;
int lookahead, cstack[3], *csp, lineno;
char *tmplname;

} istack[MAXINCL], *isp = istack;

void ipush(FILE *in)
{

if (isp == istack + MAXINCL)
err("Including too deep");

isp->lookahead = lookahead;
memcpy(isp->cstack, cstack, sizeof cstack);
isp->csp = csp;
isp->in = in;
isp->tmplname = tmplname;
isp->lineno = lineno;
++isp;

}

FILE *ipop(void)
{

--isp;
lookahead = isp->lookahead;
memcpy(cstack, isp->cstack, sizeof cstack);
csp = isp->csp;
tmplname = isp->tmplname;
lineno = isp->lineno;
return isp->in;

}

Most elements of iframe have been explained in former text, except:

• in: The file pointer of the current input file;
• tmplname: The filename of the current input file.

The isp variable points to the top of the including stack. The ipush() function
pushes the current context to the including stack. The ipop() functions recovers
the context from the including stack.

7

The omitted part of the tmpl() function can be completed now.

void tmpl(FILE *in, FILE *ou)
{

char *p;

while (lookahead != END)
switch (lookahead) {
case INCL:

match(INCL, in);
if (lookahead != LITERAL)

parserr("Expect included filename");
if (!(p = strdup(literal)))

syserr();
match(LITERAL, in);
match(CLOSE, in);
ipush(in);
tmplname = p;
if (!(in = fopen(tmplname, "r")))

err("%s: %s",
tmplname, strerror(errno));

lineno = 1;
csp = cstack;
lookahead = gettoken(in);
tmpl(in, ou);
fclose(in);
free(tmplname);
in = ipop();
break;

/* Handling other tokens
*
*
*/

}
}

5 Execution
We can't pipe the script to the shell, because the script itself may read the
standard input. Thus Shsub creates a temporary file to save the script. Should
it be a named pipe (FIFO) or a regular file?

Shsub chooses regular file. If we use a named pipe, we must have two parallel
processes, and some subtle questions arise. If a signal is delivered to Shsub,
should it be forwarded to the shell process? If the shell process terminated,
should Shsub aborts parsing and returns the exit status of the shell process?
These issues complicate the code.

Shsub attempts to avoid these process and signal issues by calling execv() and
execl() without fork(). However, this causes a new issue: How do we clean

8

up the temporary file if we substitute the process image? The solution of Shsub
is prepending a command to the script that deletes itself.

char script[] = "/tmp/shsub.XXXXXX";

int main(int argc, char **argv)
{

FILE *in, *out;
char *sh = "/bin/sh";
int fd;

/*
Misc tasks
......
......
*/
if ((fd = mkstemp(script)) == -1 || atexit(rmscr))

syserr();
if (!(out = fdopen(fd, "w")))

syserr();
fprintf(out, "#!%s\nrm %s\n", sh, script);
tmpl(in, out);
if (fchmod(fd, S_IRWXU) == -1)

syserr();
if (fclose(out))

syserr();
if (argc > 0)

execv(script, argv);
else

execl(script, "-", NULL);
syserr();
return 0;

}

The main() function also registers a clean-up function rmscr() with atexit().
If a parsing error happens after the temporary file is created and before the
script is executed, rmscr() will delete the temporary file.

6 Building and Installation
One interesting thing about Shsub is that the installation script of Shsub uses
Shsub itself.

Shsub 2.0.0 is incompatible to earlier versions. To make parallel installations
possible, the makefile of Shsub supports the name variable for the install
pseudo target. The following command installs Shsub with the name shsub2.

$ sudo make install name=shsub2

The name variable doesn't only affect the name of the installed files but also the
words used in the man page. Thus the man page of Shsub is a Shsub template

9

which is used to generate a real man page with specific name during installation.

all: shsub

install: all
name='$(name)' ./shsub shsub.1.tpl >shsub.1
mkdir -p $(bindir) $(mandir)/man1
$(INSTALL) shsub $(bindir)/$(name)
$(INSTALL) -m644 shsub.1 $(mandir)/man1/$(name).1

shsub: shsub.c
$(CC) $(CFLAGS) -o $@ $<

Notice that there isn't a rule of shsub.1, because a makefile rule can't depend
on a variable. The real man page is always regenerated while installation.

10

	Introduction
	Lexical Analysis
	Parsing and Translation
	Including
	Execution
	Building and Installation

